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Background Universal Framework

Federated Learning is a collaborative learning paradigm, where multiple a) Cooperation of Online and Offline Models
clients collaboratively learn a global model without sharing their private
data.

« When data among clients are not independently and identically distributed,
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Convergence Analysis

We theoretically demonstrate Fed-CO2 converges faster than
FedBN.
Following previous work?, we can decompose the NTK in a direction
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When a £ 1, the convergence rate is dominated by V(t).

In this case, the convergence performance can be analyzed by comparing
the least eigenvalue of V=2, A,;n (V™).

Theorem: For the V-dominated convergence, the convergence rate of
Fed-CO2 is faster than that of FedBN.

Address both label distribution imbalance and feature shift
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data heterogeneity issues in Federated Learning. .

Label Distribution Imbalance

A universal Federated Learning framework for both label distribution skew
and feature skew with the cooperation of online and offline models.

* Online model is partially personalized and learns general knowledge.

« Offline model is locally trained and learns specialized knowledge.

* In the test phase, we fuse predictions from online and offline models to
combine general knowledge and specialized knowledge.

Empirical Results

Table 1: Experiment results for FLL with Feature Skew on Office-Caltech10.
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‘Intra-Client Knowledge Transfer Mechanism.

Feature Shift Offline Model last round

« Utilize knowledge
distillation with KL
divergence to transfer
knowledge between
the online and offline
models.

Knowledge Transfer

Table 2: Experiment results for FLL with Feature Skew on DomainNet.

_ DomainNet

Methads Quickdraw
SingleSet
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FedAvg [2] 56.1+1.6

Pchrox [4] 54.4+3.1
FedPer [1] 62.5+1.2
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‘Make full use of local specialized knowledge and global

general knowledge. * Freeze the teacher

models to stabilize
learned knowledge.
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