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·Address both label distribution imbalance and feature shift 

data heterogeneity issues in Federated Learning.

Motivation

·Make full use of local specialized knowledge and global 

general knowledge.  

Background
• Federated Learning is a collaborative learning paradigm, where multiple 

clients collaboratively learn a global model without sharing their private 

data.

• When data among clients are not independently and identically distributed, 

the performance of the learned consensus model can degrade substantially. 

This problem is called the data heterogeneity issue. 

Universal Framework

• A universal Federated Learning framework for both label distribution skew 

and feature skew with the cooperation of online and offline models.

• Online model is partially personalized and learns general knowledge.

• Offline model is locally trained and learns specialized knowledge.

• In the test phase, we fuse predictions from online and offline models to 

combine general knowledge and specialized knowledge.

Enhanced Cooperation Mechanisms

·Intra-Client Knowledge Transfer Mechanism.

·Inter-Client Knowledge Transfer Mechanism.

• Utilize knowledge 

distillation with KL 

divergence to transfer 

knowledge between 

the online and offline 

models.

• Freeze the teacher 

models to stabilize 

learned knowledge.

• Introduce classifiers of 

the offline model from 

other clients to access 

general knowledge 

from other clients.

• Let image features be 

recognized well by 

these introduced 

classifiers to enhance 

model’s domain 

generalization ability.

Convergence Analysis

We theoretically demonstrate Fed-CO2 converges faster than 

FedBN1.
Following previous work2 , we can decompose the NTK in a direction 
component and a magnitude component.

When α ≤ 1, the convergence rate is dominated by V(t). 
In this case, the convergence performance can be analyzed by comparing 
the least eigenvalue of 𝐕∞, λmin(𝐕∞). 
Theorem: For the V-dominated convergence, the convergence rate of 
Fed-CO2 is faster than that of FedBN.
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Empirical Results

We achieve SOTA performance on FL scenarios with 

various kinds and degrees of data heterogeneity issues!
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